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ABSTRACT

A method for simultaneous integration of synthetic
aperture radar (SAR) and optical remote sensing data in
an estimation algorithm is presented which results in
estimates of foliage mass over a larger range of values
and more accurately than would be possible with either
data type alone. The improved estimates are expected to
result in more accurate calculation of ecosystem
exchange from biogeochemistry models. The solution
uses simplified closed-form models of scattering and
reflectance derived from more complicated numerical
models in a nonlinear estimation algorithm. Results are
compared with available field measurements for 25
reference plots. A thorough error analysis is carried out
to characterize the statistical accuracy of the estimation
results with respect to errors in the microwave scattering
and optical reflectance models. The foliage mass data are
ultimately to be used to derive leaf area index (LAI), an
essential driving variable for forest process models.

1. INTRODUCTION

Recent research and resulting achievements in
single sensor analysis, along with the more widespread
availability of several types of remote sensing data,
create the possibility for combining those data and
analyses into a single algorithm to invert for, or
estimate, their key variables. Microwave and optical
range frequencies are sensitive to variables defining
vegetation canopies and contain  independent
information. Hence, their combination in a single
algorithm should improve the resulting estimates by
reducing uncertainty about estimates made from such
imagery, as well as creating the possibility to extend the
range of validity of the variable estimates. The latter is
due to the sensitivity of each data type to different
ranges of stand variables.

We have previously demonstrated these
advantages through a regression-type analysis using field
data of leaf biomass and near-simultaneous AIRSAR and
Landsat TM data in the H.J. Andrews forest in Oregon
(1]. Here, we expand this work by replacing the
regression analaysis for radar data with a scattering

model-based solution, and that for Landsat TM with a
reflectance model-based solution. The numerical
scattering model is used to simulate all channels of radar
data assuming the knowledge of forest variables over a
“typical” range and to express the generated results as
closed-form functions, such as polynomials, of a small
number of independent variables (in this case, 1). A
similar approach is used with the numerical reflectance
model based on a radiative transfer forlmulation [2] and
incorporates a biophysically based leaf scattering
coefficient with an absorption coefficient as determined
by leaf thickness and the major biochemical
constituents. The model can include variations in the
canopy architecture through a variety of leaf angle
distributions and soil background through soil
reflectance. The resulting simple functions are used in a
nonlinear optimization algorithm to estimate foliage
mass. Allometric relations of the species under study
will be used to relate the two variable sets needed in
backscatter and reflectance models. Here the knowledge
of species type will be assumed, and the variable set will
be limited to one variable, foliage biomass.

Our multisensor variable estimation (or
inversion) strategy can be summarized as optimizing the
solution to a nonlinear system of equations. The system
of equations is simply: .
D = F(X), M
Where,

e D = (di,ds,ds,...,dn)" is the vector of all remote
sensing data of all types to be included for each
spatial unit (pixel)

o X =(X1,X2,...xm)", with M<N, is the vector of all
the variables to be estimated at that spatial unit

e F(X) is an operator of dimension NxM that is a
nonlinear functional of X, and each of its elements
relates one or more of the data points to one or
more of the variables.

The goal is to solve for X. In the case of estimating
foliage mass only, dimension of X is simply 1 (one).
We still include several measurements on the lefi-hand
side of Equation (1) to improve solution accuracy and
solve for X over a wider range since each of the
elements of D may be sensitive to different ranges of X.



The system of equations would then be written as

(d],dz,(‘h,...,dN)t = (Fl(Xl), Fz(X1), F;(xl),..., Fn(Xl)()‘
2)
with x; = foliage mass. Each functional on the right-
hand side could relate its corresponding measurement to
foliage mass through various analytical and numerical
models. For TM data, these would be any of the canopy
reflectance models. For SAR data, they would be the
numerical forest scattering models. Due to the
nonlinearity of each element of F with respect to x, the
solution to this system has to be carried out as a
nonlinear optimization. In addition, since both the
variable x; and the measurements in D are stochastic in
nature, appropriate modifications to the optimization
algorithm need to be made through inclusion of their
covariance operators. The optimization process is best
carried out through an iterative algorithm such the
conjugate gradient method or various preconditioned
versions of it [3].

In the ideal, the models comprising F should
be physically based, D is in physical units of surface
reflectance or backscatter and the data available for X are
precise field measurements taken at known (to an
uncertainty) locations. Previously [1], we have solved
Equation (2) when the right-hand side was derived from
regression analyses. Here, we propose work towards the
ideal by replacing the regression-derived components of
F with those based on analytically based models,
improving the retrieval of physical units from Landsat
and radar imagery, and using additional field data for
development and validation of the model.

2. AVAILABLE DATA

The data to be used in this study are collected over the
H. J. Andrews Forest in Oregon. This area consists of
various dense old-growth conifer stands, with biomass
values ranging from less than 100 tons/hectare to over
1000 tons/hectare. The average altitude is about 950 m,
with the lowest and highest points at about 600m and
1700m, respectively. The forest stand characteristics
have also been extensively documented. In particular,
foliage biomass and leaf-area index (LAI) values for
approximately 30 reference stands have been reported [4].
These were used previously to construct the SAR and
TM regression models, as well as to validate the unified
estimation algorithm results. The remote sensing data
consist of polarimetric C-, L-, and P-band radar data
from the JPL airborne SAR (POLSAR/AIRSAR), the
C-band single-polarization data from the JPL
topographic SAR (TOPSAR), and the Thematic Mapper
(TM) data from Landsat, all acquired in late April 1998.
The range pixel spacing of the POLSAR is 3.3m for C-
and L-bands and 6.6m for P-band. The TOPSAR pixel
spacing is 10m, and the TM pixel size is 30m.
Radiometric and polarimetric calibrations have been
carried out on the POLSAR data. Due to pronounced

topography, the radiometric calibration involves an added
step to remove the effect of local slopes. The Landsat
TM data were acquired under almost cloud-free
conditions. All radar data are coregistered to the TM data
using the PCI software (Figure 1) through geometric
iteration processes.

Of the 15 AIRSAR, 2 TOPSAR, and 6 TM
principally independent data channels, only a subset is
actually useful and practically independent. Based on our
previous studies [1], we have determined the following
channels to be uniquely useful for our study: TM bands
1,24,7, TOPSAR C-VV correlation, POLSAR P-
HH+P-HV, POLSAR C-HV+(C-HH or C-VV) or L-
HV+(L-HH or L-VV).

3. ANALYTICALLY BASED SCATTERING
AND REFLECTANCE MODELS

The relationships between foliage mass and
Landsat TM bands and various channels of the AIRSAR
data were derived by simulating them using numerical
reflectance and forest scattering models, respectively, and
inputting typical ranges of canopy variables. Allometric
relations were used to relate foliage mass to reflectance
and scattering properties such as expected tree heights,
branch densities, and diameters. The simulation results
were fitted to polynomials with foliage mass as the
independent variable. The underlying assumption here is
that the forest variables estimated from the radar
scattering models can be related to those that could be
estimated from optical remote sensing data such as
Landsat TM. In other words, the measurements of
various sensor types should be expressed in terms of a
unified variable set, which is accomplished by using
allometric relations.

4. ESTIMATION ALGORITHM

Once both SAR and TM data are expressed as closed-
form functions, in this case polynomials, of the
independent variable foliage mass, they can be used
simultaneously in an estimation algorithm. Here, we
have used a nonlinear optimization technique using an
iterative conjugate gradient algorithm. Solutions are
found within a few (10-20) iterations given a tolerable
error condition. Statistical accuracy of the estimates are
studied by superimposing polynomial coefficient noise
with uniformly Gaussian distribution, repeating the
estimation many times, and averaging the results.

5. RESULTS

The above algorithm is applied to the radar and optical
data to estimate foliage biomass within the H.J.
Andrews forest. The results are compared to those
generated previously where all data were related to
foliage biomass through regression models. It will be
shown that the analytical scattering models produce



Figure 1. Coregistered Landsat TM (5,4,3), POLSAR, and TOPSAR data after geometric iteration and re-calibration.

more accurate estimation results that can be applied to a
wider range of stands provided that accurate allometric
relations are available. Numerical results will be shown
at the presentation.
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Figure 2. Comparison of foliage mass estimation results with and without SAR data.




